Getting to ZNE*

* Energy or Electricity or Emissions?

In simplest terms, Zero Net Energy Emissions or ZNE

means optimizing EFFICIENCY to balance DEMAND and PRODUCTION on an annual basis

(although there are several more specific definitions)

Absolute ZERO isn't always achievable, BUT

It's compelling because it is a powerful driver for **EFFICIENCY**

The foundation for all definitions: ZNE-ready

Efficiency benefits

With **EFFICIENCY** you get:

- Reduced energy use & utility bills
- Improved comfort
 - → Indoor temperature stays stable longer when the power is out!
- Better indoor air quality
- Quieter interiors
- Faster delivery of hot water
- Protection against rising energy costs
- Lower climate change impacts

That's a life safety feature!

* To achieve ZNE, renewable energy production must meet the home's total annual energy usage – including ALL FUELS.

Added benefits from ZNE

Add **SOLAR** to an efficient home and you also get:

- Free energy when the sun is shining
- Power when the grid goes down
 > IF you add a battery!
- Resale value with solar +4% *
- Even lower climate change impacts
- A ZERO-EMISSIONS home
 - → If ALL the energy you use is from renewables!

100% renewable energy is available in many utility areas +

Image Xana_UKR via iStock

^{*} https://money.com/home-value-solar-panels/

What is a ZNE home, really?

Does ZNE cost more? NOT if it's baked in!

I ask customers to give me \$100 more per month and I'll return \$300 back to them in energy savings.

Thrive Home Builders in Denver offered ZNE as an option; it didn't sell.

Then they designed for ZNE from scratch and made it standard.

Now their ZNE homes cost the same to build as their homes without solar.

Not only that, but ...

 Offering ZNE has given them unique access to premium properties.

And ... ZNE builders have a market advantage

THE COMMON PERCEPTION that there is a cost premium for ZNE homes assumes no fundamental design changes

"The learnings from the [ZNE] homes have improved all of our homes significantly improved their saleability and improved our position in the marketplace."

~ Ryan Scott, CEO Avalon Master Builders

And what are the differences between the three ZNEs: energy, electricity, emissions?

Title 24-2019—Moving toward ZNE

The 'duck curve' phenomenon

CALIFORNIA ELECTRIC GRID HOURLY LOAD PROFILES, 2012 - 2020

Annual ZNE doesn't balance production with consumption

 A clean energy future relies on achieving that balance

Getting from Title 24-2019 to zero net ENERGY

Title 24 2019 MORE PV ... enough for all energy loads

ZNE

NOTE: Because PV production can only be credited against **electricity** bills, zero net **ENERGY** homes are typically all-electric High-performance installation & commissioning

What does the **E** stand for?

It depends on how much renewable energy (RE) you're producing onsite (or buying) —

E stands for:	If RE supplies 100% of the home's annual:	And:	
ENERGY	ENERGY use – including ALL FUELS	Title 24-2010	
ELECTRICITY	ONLY ELECTRICITY use	24 2019	
EMISSIONS	ELECTRICITY use – and there is no in-home gas combustion	The home is 100% ELECTRIC & uses or buys 100% ZERO-EMISSIONS GRID POWER (or is off-grid)	

What does the **E** stand for?

It depends on how much renewable energy (RE) you're producing onsite (or buying) —

E stands for:	If RE supplies 100% of the home's annual:	And:	
ENERGY	ENERGY use – including	common	
ELECTRICITY	ONLY ELECTRICITY use	use of ZNE	
EMISSIONS	ELECTRICITY use – and there is no in-home gas combustion	The home is 100% ELE or buys 100% ZERO-EA GRID POWER (or is o	CTRIC & uses

The Devil's in the details

Image: Openclipart via publicdomainvectors.org

Critical factors for achieving ZNE affordably:

- Roof
- Form
- Plan
- Enclosure
- Windows
- Documentation

ROOF: start at the top

- Meeting ZNE dictates a solar production goal—which ZERO?
 - Electricity?
 - Energy?
 - Emissions?
- Numbers you'll need
 - Energy use intensity (EUI)
 - Total load (KW DC energy)
 - PV square footage
 - Roof area

Image Xana_UKR via iStock

Choose a target EUI (Kbtu/sf/yr)

Source: The Technical Feasibility of Zero Net Energy Buildings in California, Arup, December 2012

Estimate your annual energy LOAD

What's the total load in kilowatt-hours (kWh)? EUI (kBtu/sf/yr) x House Size (sf) EXAMPLE: 1,800 sf house in Oakland (Zone 3) 12.7 kBtu/sf/yr x 1,800 sf = 22,860 kBtu/yr Convert kBtu/yr to kWh/yr: divide by 3.412 22,860 / 3.412 = 6,700 kWh/yr

Calculate a solar energy PRODUCTION goal

How much PV is needed?

In CA, on average, 1 kW of Dc peak capacity produces 4.5 kWh per day of 1,642 kWh per year, so 43 $6_{3}700/1,642 = 4.13$ KW DC Panels in CA on average produce 23.99 kWh/sf/yr, so 1KW occupies 68.42 sf 4.1 KW x 68.42 sf/KW = 280.5 sf or 12 solar panels

Source: https://www.solarreviews.com/blog/how-much-electricity-does-a-solar-panel-produce

Estimate uninterrupted roof AREA

How much roof space is that, really?

Typical residential panels are about 65" x 39" so an array 2 panels high by 6 panels wide is **about 11 ft. high x 20 ft. wide** plus 3' on 3 sides for fire clearance

gives a total roof area of

14 x 26 ft = 364 sq.ft.

PANELS

ROOF

Source: http://news.energysage.com/average-solar-panel-size-weight/

Why uninterrupted roof area matters

Images above: https://greensunnj.com/solar-hall-of-shame/

Images above: https://greensunnj.com/solar-hall-of-shame/

FORM: simplify to save \$, reduce risk

MUCH EASIER to heat, insulate, & air seal SIMPLE forms. PVs fit easily.

REALLY HARD to heat, insulate, & air seal COMPLEX forms! LITTLE space for PVs!

The VALUE of simplifying

What are the costs of complexity here?

- Design \$\$\$
- Construction \$\$\$
- Liability risks
- Lost solar opportunity
- Higher utility costs
- Potential moisture intrusion

The COST of complexity

Construction cost assumptions (labor + materials):

- \$300 / foot of perimeter
- \$500 / corner

Not included:

- Interior impacts
- Roofing impacts
- Design costs
- Occupant utilities

Compare:	Plan A	Plan B	Plan C
Perimeter	200 ft	220 ft	250 ft
Corners	4	8	18
increase		\$9,000	\$15,000

Image A greenbuildingadvisor.com | Image B greenvillesc.gov | Image C www.builderbill-diy-help.com

PLAN: optimize systems

Key factors for heating, ventilating, air conditioning, and water heating:

- Locations of equipment and distribution system components
- Proper sizing no rules of thumb!
- Equipment efficiency
- Distribution system design -

- Load calculations
- Sizing based on calcs
- Complete system specs

HVAC planning

Accommodate

 all parts of
 system in
 conditioned
 space

PLUMBING planning

ENCLOSURE: design holistically

- High performance relies on attention to assemblies & continuity—
 - Framing
 - Insulation
 - Barriers

FRAMING: minimize thermal bridging

Advanced framing:

- Studs 24" o.c.
- Openings aligned with framing
- Windows ordered to fit stud spacing

DRAWINGS SHOW EVERY WALL & EVERY MEMBER

Habitat for Humanity Stockton Demonstration Project

INSULATION: cavity and exterior

Cavity insulation:

- Above-code R-values when feasible
- Always ensure quality installation
- Avoid batts **unless** using ...
- Exterior insulation:
 - 2x the effective R-value of cavity insulation
- Both, ideally:

BARRIERS: continuous!

Ensure continuity of:

- ✓ Air barrier
- ✓ Water barrier
- ✓ Thermal barrier
- ... throughout the enclosure!

Special thanks to Coldham & Hartman Architects for sharing this download → http://www.candharchitects.com/projects/college-of-the-atlantickathryn-w-davis-student-village/ (click on Project Details)

WINDOWS: think specs and more!

ALSO: Number Size Location + Orientation + Exposure Type

Window SPECS

High performance means:LOW thermal values

- U-value ≤ 0.27
- SHGC (solar heat gain coefficient) ≤ 0.24

HIGH visibility

 VT (visible transmittance) ≥0.40 (while maintaining low U & SHGC!) If SHGC is too high, ZE homes can easily overheat

Window STRATEGIES

Questions:

- How many?
- What size(s)?
- Where?
- Where NOT?
- Types of operation

Answers:

- Fewer rather than more
- Fit within framing
- Views, cross-ventilation, egress
- Where heat gain is a problem (west, below knee level, etc.)
- Hinged whenever possible (vs. sliders)

Window SHADING

Shading principles

- Overhangs have limited effect at low sun angles
 - West & east façades
 - Spring & fall hot spells
- The lower the glass, the harder it is to shade
 - Occupants' knees can't enjoy the view
- Limit skylights—also hard to shade

If shading is inadequate, ZNE homes can easily overheat

SHADING OPTIONS

DOCUMENTATION: make it stick!

Contract documents are BINDING!

They should include everything that is needed to achieve ZNE—

- Drawings
- Details
- Specifications
- Testing & verification requirements

GreenFormat™

Structure Format for Information to Support Sustainable Design and Product Choices

Contract document SCOPE

	ITEM:	VERIFY IN FIELD:
V	Air barriers	In place
\checkmark	Air sealing	Comprehensive
\checkmark	Advanced framing	thes specs
\checkmark	Window NFRC sticker	Match specs
\checkmark	Cavity insula	Properly installed
\checkmark	HVAC load calculations	Checked
\checkmark	Duct design	Checked
\checkmark	Lighting	All LED/high-efficacy

Ensure contract documents:

- Clearly communicate your goals
- Specify procedures, timelines, metrics
- Include:
 - Performance testing of key building features and equipment during construction
 - Operational testing and verification of performance of all key systems at completion

RESOURCE:

<u>PG&E Zero Net Energy Builder Resource Guide</u> (free download including many resources with live links)

DRAWINGS—not just the usual

All the usual PLUS:

- Wall framing elevations
 - Exterior
 - Interior
- Complete mechanical plans
 - Heating & cooling
 - Ventilation
- Complete plumbing plans
 - Schematic
 - Manifold installation

AIR LEAKAGE control documentation

Include:

- Air leakage target for the construction crew
- Air sealing cross section
- **Details** for air barrier, connections, & transitions
- Specs for air sealing products, installation methods, & quality management procedures

RESOURCE (free download) Air sealing drawing by Coldham & Hartman Architects →

The CONSTRUCTION Phase

- Clear GOAL communication (again!)
- Team problem-solving!
- Monitoring progress—
 - Performance testing of key systems during construction
- Ensuring proper performance upon completion—
 - Commissioning
 - Verification

Quality

QUALITY MANAGEMENT is the responsibility of the CONSTRUCTION CREW not the HERS rater!

> Monitor performance during construction!

Measuring & Verifying Performance

Validate achievement of system specifications

- Test as you go—hit the targets—and
- Verify on completion

Sample report commissioning done at Habitat for Humanity Stockton ZNE demonstration home

Download report <u>HERE</u>

Table 4-3. Sample mechanical and enclosure commissioning report, Stockton, CA¹¹

MINI-SPLIT

Daikin heat pump model RXS09LVJU, ¼ ton, SEER 24.5, HSPF 12.5 Daikin ducted air handler FDXS09V95, 30' line set (no refrigerant adjustment required) Wired thermostat Daikin ENVi, web-enabled

	Duct leakage	13 CFM ₂₅ (hard to seal return)
	Duct leakage to outside	0 (not measurable, less than 9 CFM ₂₅)
	Check for refrigerant leaks	450 psi overnight test, 92-micron evacuation
ſ	Static pressure	+7.7 Pa (hard to measure, poor plenum access)
	Fan watt draw	50 watts (high fan speed, 10-watt resolution)
ſ	Total air flow	378 CFM (high fan speed, sum of the supplies)
	Room air flows (CFM)	
l	Living	104
l	 Kitchen 	51
l	Master bedroom	95
l	Bedroom 2	56
l	Bedroom 3	72
ľ	Bedroom pressurization with air handler fan o	on high
l	 Master bedroom 	+2.5 Pa
	Bedroom 2	+1.8 Pa
	Bedroom 3	+2.8 Pa

ENERGY RECOVERY VENTILATORS

Panasonic FV-04VE1 (2 units, each rated 40 CFM exhaust, 30 CFM supply, continuous operation)

	Hall ERV	Living Room ERV
Static pressure	-21.0 Pa/+11.3 Pa	30.9 Pa/+9.6 Pa
Fan Watt draw	24.3 Watts	22.2 Watts

BATHROOM	I EXHAUST FANS	
Panasonic FV-11VQC5		
	Master Bath	Hall Bath
Rated fan speed (not selectable)	110 CFM	100 CFM
Humidity set-point	70% RH	70% RH
Occupany timer set-up	turn off 5 minutes after	turn off 5 minutes after
	occupant leaves	occupant leaves
Standy by Watt draw	0.6 Watts	0.7 Watts
Watt draw when operating	22.2 Watts	22.4 Watts
Static pressure	+19.3 Pa	+17.1 Pa
Measured air flow	111 CFM	109 CFM

ENCLOSURE

Non combustion appliances in conditioned spaces		

MEASUREMENT EQUIPMENT

- Fan Wattage Kill-A-Watt P3 installed at electrical panel
- Air handler Wattage Extech 380940 clamp-on watt meter, 10-watt resolution
- Exhaust air flow The Energy Conservatory Exhaust Fan Flow Meter
- Supply air flow The Energy Conservatory Flow Blaster power flow hood
- Manometer The Energy Conservatory Digital pressure gauge, DG-700

How ZNE got started ...

Super-insulated homes in the US began in response to 70s and 80s energy crisis Passivhaus (Passive House) developed in Germany in the early 1990s In 2006, Habitat for Humanity–Metro Denver documented the first US house operating at ZNE As of mid-2019, >22,000 "ZNE-ish" homes inventoried in the US and Canada

Enter projects at www.teamzero.com/inventory-of-zero-energy-homes

Zero Energy Homes 2015-20: US & Canada

EEBA TEAM ZER

Inventory definition of ZERO

Team Zero's inventory includes all residential developments designed to achieve energy performance in the realm of zero:

- Zero energy ready
- Zero energy
- Net positive

COMING: Zero net carbon Zero embodied carbon

- Completed
- Under construction
- In design
- In planning (planning numbers omitted from graphs)

- Single-family
- Multifamily
- Market-rate
- Affordable

ZNE homes come In all flavors

EEBA TEAM ZER

Market leaders – some are small but mighty

NO.

UNITS

SAME TOP 10 as last year!

Multifamily continues to dominate growth and 95% of all units are in projects of 2+ units!

More projects are achieving ZERO! moving upward from zero energy ready

EEBA TEAM ZER

Emerging features of ZNE homes

Zero emissions homes have a big role to play

We have 12 years to limit climate change catastrophe, warns UN

Urgent changes needed to cut risk of extreme heat, drought, floods and poverty, says IPCC

• Overwhelmed by climate change? Here's what you can do

▲ A firefighter battles a fire in California. The world is currently 1C warmer than preindustrial levels. Photograph: Ringo HW Chiu/AP

2 years ago!

BUILDINGS represent 40% of global greenhouse gas emissions and of the SOLUTION.

~ Architecture 2030

The 'decarbonization' wave is building!

gtm: Solar Grid Edge Storage Wind Trending Podcasts White Papers Webinars

ENERGY

California Nears Tipping Point on All-Electric Regulations for New Buildings

Even utility PG&E, with its thousands of miles of natural-gas distribution pipelines, is calling for ending gas hookups for new buildings.

JUSTIN GERDES | JULY 29, 2020

In 2019, California mandated solar on most new homes. Next up: building electrification

10

As of December 2020:

40 local governments in CA either incentivize or mandate all-electric new construction—

- >4,000,000 people
- >10% of CA population

What cities and state(s) will be next?!

The net zero energy building (NZEB) movement has hit critical mass... **it's the way all homes will be built in the near future.**

It's expected that the global market for net zero energy structures will explode to \$78.8 BILLION by 2025.

Information Resources

Team Zero's Gateway to Zero

Online here

ZECO energy project

Online here

All-Electric New Home Guide Download <u>here</u>

ZNE Primer for Architects Download here Each of these includes MANY other resources!

ZNE Builder Resource Guide Download here

- Zero energy consulting
- Design team facilitation
- Writing, research, advocacy

Note: all images, unless noted otherwise, were provided by the presenter, purchased, or obtained via Creative Commons license.